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The Future of Arctic Shipping

By Malte Humpert and Andreas Raspotnik Arctic

sea ice is melting rapidly, and within the next decade the

effects of global warming may transform the Polar region

from  an  inaccessible  frozen  desert  into  a  seasonally

navigable ocean. The summer of 2011 saw a record 33

ships,  carrying  850,000  tons  of  cargo  navigate  the

Northern Sea Route (NSR) off Russia’s northern coast. This

year’s shipping season may see up to 1.5 million tons of

cargo, as Germany’s Alfred Wegener Institute predicts the

NSR  to  be  ice-free  and  passable  for  ships  by  early

summer.

The North West Passage (NWP), first ice-free in 2007, and the Transpolar Sea Route (TSR) may also open up to

shipping traffic over the coming decades. An in-depth assessment of the viability of shipping along the TSR will

be published in  the upcoming Arctic  Yearbook 2012,  which will  be available from the Northern Research

Forum’s website from October 2012. The development of Arctic offshore hydrocarbon resources and related

economic activities will also improve the integration of the Arctic economy in global trade patterns. Multi-year

ice and the limited seasonal window for trans-Arctic voyages however, will for the foreseeable future remain

formidable obstacles to the development of Arctic shipping and its economic viability. Trans-Arctic shipping

routes  will  thus  not  serve  as  a  substitute  for  existing  shipping  lanes,  but  will  instead  provide  new and

additional capacity for a growing transportation volume.

Summer ice extent has declined by 40 percent since satellite observation began in 1979, and over the same

period sea ice has thinned considerably, experiencing a decline in volume of 70 percent. Studies differ widely

in their predictions of when summer sea ice will melt completely. The latest findings suggest that Arctic sea

ice may have entered into a new state of low ice cover. A recent article by Valerie N. Livina and Timothy M.

Lenton on the bifurcation of Arctic sea-ice cover describes it as "distinct from the normal state of seasonal sea

ice variation." Arctic sea-ice may have crossed a tipping point which could soon make ice-free summers an

annual feature across most of the Arctic Ocean.

Longer ice-free periods

A  new  study  by  the  National  Aeronautics  and

Space  Administration  (NASA)  suggests  that

multi-year  ice,  which  is  the  oldest  and  thickest

Arctic  sea  ice  and  the  principal  obstacle  to

shipping in the Arctic Ocean, is disappearing at a

faster rate than the younger and thinner ice. The

ice-free  period  along  the  Arctic’s  main  shipping

routes is expected to increase from around 30 days

in 2010 to more than 120 days by the middle of

the century. Furthermore, the distribution of the

remaining summer ice will not be uniform across

the Arctic Ocean. Studies suggest that sea ice will

collect  and  persist  longest  along  the  northern

flanks of the Canadian Archipelago and Greenland

while the central and eastern part of the Arctic

will see the most significant decline of ice, further

extending the shipping season along the NSR. In

2011 the navigational season along the NSR lasted for 141 days, from early July until mid-November (see figure

1).

Significant obstacles remain

Nonetheless, significant obstacles to shipping remain such as icing from sea spray, wind chill, remoteness as

well as their implications for rescue and emergency operations, and the lack of reliable weather forecasts.

During the winter and spring months ice conditions along Arctic shipping routes will remain heavy, and the

amount of floating sea ice and number of icebergs - a hazard to the safety of marine transport, may increase

during the early melt season as more ice floes break apart and drift across the Arctic Ocean.

Shorter sailing distances

Routing  shipping  traffic  through  the  Arctic  allows  for  shorter  sailing  distances  resulting  in  shorter  trips.
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graph click here.
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46 vessels through Northern
Sea Route

Never before have so many vessels used the northern Sea Route for cargo
transport between Europe and Asia. (Photo: Rosatomflot)

The 2012 navigation season on the Northern Sea
Route is coming to an end. Never before have so
many vessels taken the Arctic shortcut between
Europe and Asia, and never before has so much
cargo been transported along the route.

Although the season is not yet
completely over – there are still
two Finnish icebreakers in
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research. Three new research
projects will give us new
knowledge on the Arctic and
strengthen Norway’s and Russia’s
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2011 – 34 vessels 
2012 – 46 vessels 
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Predictability 

Initial value, Forced & Total Predictability

‘mean’ vs ‘spread’

State St
at

e 

Time 

Of the First Kind:  
•  Initial value problem 

•  Sensitive dependence on 
initial conditions limits 
predictability 

•  Timescale depends on 
system 

(Adapted From Branstator 
and Teng, 2011) 

Of  the Second Kind: 

•  Boundary value problem 

•  Prediction of  statistical 
properties of  the climate 
system subject to some 
external forcing 

Total: Combination of  the two 
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Simulated September Sea Ice 20th-21st Century 

•  Exhibit rich natural variability (e.g. Kay et al., 2011) 

•  Including rapid ice loss events (similar to obs), instances of  
positive trends even within 21st century 

2000-2049 

Preindustrial 
Control 

     Sept Extent Decadal Trends 2000-2049 

Observations 
NSIDC Ice Index 

CCSM3 IPCC-
AR4 Run 

Simulated September Ice Extent 

Using climate models to investigate sea ice predictability 



Simulate Realistic Statistical Relationships 
Example: Sept Extent and Summer Atmospheric Circulation 

Ogietal.[2004]exceptthatitisslightlysmallerin
horizontalscale.Septemberseaiceconcentrationiscorre-
latedwiththesummertimeAOindexdefinedbyOgietal.
[2004]atalevelof0.51.
[9]ThestatisticalsignificanceofthepatterninFigure4b

wasassessedbycomparingitwith1000spatialpatterns
generatedbyregressingthesameJuly-SeptemberSLP
griddeddatauponrandomlygenerated,standardized,
detrendedtimeseriesofthesamelength.Foreachmap,
thespatialaverage(polewardof60!N)ofthearea-weighted
squaredcovariance(i.e.,thesquareoftheregression
coefficient)wascomputed.Theregressionpatterngenerated
fromtheactualseaiceextenttimeserieshasahigher
spatially-averagedsquaredcovariancethan92%ofthe
patternsgeneratedfromtherandomtimeseries.Thatthe
patterninFigure4bisconsistentwithphysicalreasoning
reinforcesourconfidenceinitsstatisticalsignificance.
[10]Regressionanalysiswithupperlevelgeopotential

heightandtemperaturefields(notshown)suggeststhatthe
atmosphericcirculationpatternthatoccursinassociation
withtheSLPpatterninFigure4bexhibitsadeep,
equivalentbarotropicstructure.Thecenteroftheanomalous
anticyclonicgyreovertheArcticiswarmerthanitssur-
roundingsthroughoutthedepthofthetroposphereandthe
airissinking,indicativeofalocallythermallyindirect
circulation.Theamplitudeofthegeopotentialheight

anomaliesincreasesfromtheEarth’ssurfaceuptothejet
streamlevel.

3.Discussion

[11]Theforegoingresultsaresuggestiveofacoupling
betweendistinctivepatternofatmosphericcirculation
anomalies,withagyrecenteredovertheArctic,and
anomaliesinseaiceconcentrationinthemarginalseasto
thenorthofAlaskaandeasternSiberia,aregionthat
ishighlyinfluentialinaccountingfortheyear-to-year
variabilityofArcticseaiceextent.Theprominenceofthe
circulationpatternandtheweakresponseofatmospheric
generalcirculationmodelstoprescribedsummerseaice
anomaliesinthemarginalseas(UmaBhatt,International
ArcticResearchCenter,personalcommunication,2007)
suggeststhatthecouplingisone-way,withtheatmospheric
circulationforcingtheseaiceandrelativelylittlefeedback
fromseaiceextenttotheatmosphericcirculation.
[12]Thetime-varyingindexofthepatterninFigure4b,

generatedbyprojectingsummertimeSLPfieldsforeachof
the28yearsuponthatpattern,iscorrelatedwiththe
detrendedtimeseriesofseaiceextentatalevelof0.65.
Hence,year-to-yearvariationsinthesummertimecircula-
tionovertheArcticaccountfor42%oftheyear-to-year
variabilityof(detrended)sea-iceextent.Someoftheunex-
plainedvariabilitymaybeduetovariationsinwintertime

Figure3.(a)Summer(July–August–September)surfaceairtemperatureatthe2mlevel,in!Cregressedonaninverted
standardizedyearlyindexofSeptemberArcticseaiceextent.(b)AsinFigure3abutbasedontheinverteddetrendedindex.
(c)Thelineartrend,inunitsof!Cperdecade.BasedontheNCEP/NCARReanalysisfortheperiodofrecord1979–2006.

Figure4.AsinFigure3butforsea-levelpressureinunitsofhPa.Contourinterval0.2hPa(!0.3,!0.1,0.1...).Thered
linesarepositiveanomalies.

L12705OGIANDWALLACE:SUMMERARCTICSEAICEEXTENTL12705

3of4
(Ogi and Wallace, 2007) 

Regression:  
Summer SLP on Sept ice extent 
Ekman transport of  sea ice results in 
net ice convergence 

(Data from 
1979-2006) 1950-1980 

Observations Climate Model 

Correlation: 
August SLP and Sept ice extent 

High SLP leads low sea ice 

From 8-members of  CCSM3 

(Holland and Stroeve, 2011) 

High SLP leads low ice cover 

Using climate models to investigate sea ice predictability 



Model Evidence of Seasonal-
Interannual Predictability 

reemergence and confirms the distinct behaviors that
were noted in Fig. 2. It further illustrates that the re-
emergence branches into ‘‘limbs’’ from the initial decline
of memory, and hence we can expect the same mecha-
nisms that give rise to reemergence to also enhance the
initial persistence during certain seasons, namely, at
the peak and trough of the seasonal cycle of sea ice area.
We examine in detail the seasonality of the initial per-
sistence in the following section. Sea ice extent in the
model ensemble has consistently lower lagged correla-
tion values than sea ice area (Fig. 4b versus Fig. 4a), yet
the same patterns of memory reemergence are present.

The observational data, while much noisier, have sim-
ilar patterns to the model data where the limbs branch
from initial 0-lag primary peak correlation (especially
for extent). Thus, both the summer limb and winter limb
may only be present for short lags (August–September
and July–October for the summer limb and January–
March for the winter limb). However, there is a signi-
ficant reemergence of winter anomalies originating in
January, February and March at 1-yr lags that is subtler

in the model. As discussed by Bitz et al. (2005), the lo-
cation of the mean winter ice edge is strongly related to
ocean heat flux convergence, which owing to its relatively
long time scales causes a significant winter-to-winter
memory in the location of the winter ice edge and thus
the total Arctic sea ice area and extent.

3) THE CONNECTION BETWEEN THE INITIAL

DECLINE OF MEMORY AND MEMORY

REEMERGENCE

The peak values of lagged correlation in the summer
limb of memory reemergence correspond to pairs of
months that share a similar amount of mean sea ice
cover. For the winter limb, this relationship is not as
strong. Figure 5 shows the annual cycle of mean sea ice
area in the CCSM3 ensemble for the period 2001–30.
The arrows indicate predictor–predictand persistence
pairs that share a high degree of lagged correlation rel-
ative to other pairs of months with identical lag. The
black arrows indicate months that represent the summer
limb of high lagged correlation values, whereas the gray

FIG. 4. Correlations values for all months and all lags. Months along the x axis indicate the month whose anomaly
(predictand) is correlated with the month’s anomaly along the y axis (predictor), from lags of 0 months (thus values of
1 along the diagonal) to 23 months. Shown are (a) model sea ice area, (b) model sea ice extent, (c) observed sea ice
area, and (d) observed sea ice extent. The model results are the ensemble mean correlation of the individual en-
semble members. January and February data have been duplicated for ease of following structures through winter.
Figure repeats what is shown in Fig. 2 for lags up to and including 15 months.
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(Blanchard-Wrigglesworth et al., 2011) 

reemergence and confirms the distinct behaviors that
were noted in Fig. 2. It further illustrates that the re-
emergence branches into ‘‘limbs’’ from the initial decline
of memory, and hence we can expect the same mecha-
nisms that give rise to reemergence to also enhance the
initial persistence during certain seasons, namely, at
the peak and trough of the seasonal cycle of sea ice area.
We examine in detail the seasonality of the initial per-
sistence in the following section. Sea ice extent in the
model ensemble has consistently lower lagged correla-
tion values than sea ice area (Fig. 4b versus Fig. 4a), yet
the same patterns of memory reemergence are present.

The observational data, while much noisier, have sim-
ilar patterns to the model data where the limbs branch
from initial 0-lag primary peak correlation (especially
for extent). Thus, both the summer limb and winter limb
may only be present for short lags (August–September
and July–October for the summer limb and January–
March for the winter limb). However, there is a signi-
ficant reemergence of winter anomalies originating in
January, February and March at 1-yr lags that is subtler

in the model. As discussed by Bitz et al. (2005), the lo-
cation of the mean winter ice edge is strongly related to
ocean heat flux convergence, which owing to its relatively
long time scales causes a significant winter-to-winter
memory in the location of the winter ice edge and thus
the total Arctic sea ice area and extent.

3) THE CONNECTION BETWEEN THE INITIAL

DECLINE OF MEMORY AND MEMORY

REEMERGENCE

The peak values of lagged correlation in the summer
limb of memory reemergence correspond to pairs of
months that share a similar amount of mean sea ice
cover. For the winter limb, this relationship is not as
strong. Figure 5 shows the annual cycle of mean sea ice
area in the CCSM3 ensemble for the period 2001–30.
The arrows indicate predictor–predictand persistence
pairs that share a high degree of lagged correlation rel-
ative to other pairs of months with identical lag. The
black arrows indicate months that represent the summer
limb of high lagged correlation values, whereas the gray

FIG. 4. Correlations values for all months and all lags. Months along the x axis indicate the month whose anomaly
(predictand) is correlated with the month’s anomaly along the y axis (predictor), from lags of 0 months (thus values of
1 along the diagonal) to 23 months. Shown are (a) model sea ice area, (b) model sea ice extent, (c) observed sea ice
area, and (d) observed sea ice extent. The model results are the ensemble mean correlation of the individual en-
semble members. January and February data have been duplicated for ease of following structures through winter.
Figure repeats what is shown in Fig. 2 for lags up to and including 15 months.

236 J O U R N A L O F C L I M A T E VOLUME 24Lagged Correlation Ice Area 
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Ensemble 

arrows indicate months that represent the winter limb of
high lagged correlation values in Fig. 4. The results from
Fig. 4 hint that the degree of similarity in the expanse of
the Arctic sea ice, and likely the collocation of the sea
ice edge between certain months, is one of the main
factors driving the overall memory in the sea ice.

To investigate this further we have calculated the
correlation between absolute change in sea ice area and
extent for both model and observations and the 1-month
lag correlation for all months. In the model the abso-
lute change in month-to-month sea ice extent explains
63% of the 1-month lagged correlation (32% for area).
The relationship in observations is not significant at the
95% level, yet the sign of the correlation agrees with the
model. This behavior is even clearer at lags of 2–3 months.
For a 3-month lag, absolute value of the 3-month change
in mean area (extent) explains 70% (72%) of the 3-month
lagged correlation in the model and extent explains 35%
of the 3-month lagged correlation in the observations.
Thus, during the part of the annual cycle in which there is
a rapid change (freeze up in fall, melt in spring) 1-month
lagged correlations tend to be lower. Therefore, the sea-
sonality in the initial decline of persistence is driven by
the seasonal cycle in sea ice area.

Figure 6 shows the 1-month-lag squared correlations
of sea ice area and extent for all months of the year
(January correlated with February, February with March,

and so on) in both model and observations. In the model,
area and extent have similar annual cycles of 1-month-lag
squared correlations: low values occur during spring and
fall, separated by a peak during late summer, with August
having the highest 1-month-lag squared correlation in
the annual record. During winter, values are halfway be-
tween the summer peak and spring/fall valley. The same
measure of near-term persistence in observations of sea
ice is in reasonable agreement with the model ensemble
mean outside the winter months, although the summer
peaks are broader. In all four curves in Fig. 6, the differ-
ence between the high (August) and low values (spring
and fall) in 1-month-lag squared correlation is signifi-
cant at the 95% confidence level [assuming an first-order
autoregressive (AR1) model; e.g., von Storch and Zwiers
1999]. The 1-month-lag squared correlation is consis-
tently higher for area than extent in the model, and the
same is true for most months in the observations. Our
results suggest that extent is not as valuable as area for
predicting sea ice behavior, and thus we focus on area
as we attempt to identify mechanisms of persistence and
reemergence. Later we discuss why. In the next two sec-
tions, we describe in detail the physical mechanisms
driving this seasonally varying pattern in persistence
and the reemergence of memory.

b. SSTs as source of persistence and reemergence
in sea ice area

A possible mechanism for the increased lagged cor-
relation and persistence between months in the melt and
growth season with similar ice area comes from per-
sistence within the ocean. Our hypothesis is that SST

FIG. 5. Mean annual cycle of sea ice area in millions of square
kilometers in the CCSM ensemble run for 2001–30. The arrows are
used to illustrate pairs of months that show high correlation values
in their sea ice area (and extent) anomalies. The black arrows show
pairs of months during the summer limb of memory seen in Fig. 4:
(1) August–September, (2) July–October, (3) June–November,
and (4) May–December. The gray arrows represent pairs of months
with memory reemergence in the winter limb: (A), January with
April; (B), December with June; (C), November with July; and (D)
late summer (July–October) with the following September.

FIG. 6. Squared correlation at 1-month lag for area and extent
in observations and the CCSM3 ensemble for 2001–30. Along the
x axis, ‘‘J’’ refers to January correlated with February, ‘‘F’’ refers
to February correlated with March, and so on.
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Predictability Ensemble Model Integrations 

• Initialize runs with identical ice-ocean-
land conditions from CCSM3 

• Use 3 sets of  Jan 1 initial conditions 
• Each ensemble set has ~20 members 

• Run forward 2-years  

Set 2 

Set 3 

September Extent 

Observations 
NSIDC Ice Index 

CCSM3 
IPCC-AR4 

Run 
Set 1 

recent historical record with a thinner mean ice pack

(Fig. 2b, c). These are obtained from the January 1 con-

ditions from years 2016 and 2017 of a standard twenty-first
century integration with a middle range emissions scenario

(SRES A1B; IPCC 2007). The specific years used for the

initialization of Sets 2 and 3 were chosen based on the
control simulation behavior. They differ in that set 2 is

initialized with the January 1 conditions just preceding a

large reduction in September ice area (of 1.45 million
km2), and set 3 is initialized with the January 1 conditions

just following this large ice area loss (Fig. 3). Although

much more extreme low-ice states occur later in the sim-
ulated twenty-first century, these initial conditions were

chosen because they can provide insight into the predict-

ability of large ice loss events similar to that of September
2007 and the conditions following such an event.

The control integrations from which the initial condi-

tions are obtained can be considered another member of the
predictability ensembles as they have identical initial ice–

ocean–terrestrial conditions for the years in question and

they are treated as such for our results in Sect. 3. Different
standard CCSM3 ensemble runs were used for the selected

twentieth century (1970) initial conditions and twenty-first
century (2016 and 2017) initial conditions. This was due to

the initial condition availability from these runs. However,

Ensemble 1;  Initial Thickness=3.21m(a)

Ensemble 2;  Initial Thickness=1.82m(b)

Ensemble 3;  Initial Thickness=1.49m(c)
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Fig. 2 The January 1 initial ice thickness conditions prescribed for
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Fig. 3 The (a) northern hemisphere September ice area and (b)
Arctic averaged January ice thickness from the twentieth to twenty-
first century control run that is used to obtain initial conditions for the
ensemble experiments. The red diamonds show the years from which
the initial conditions are obtained (in panel a, these are shown for the
time 3 months prior to the January initialization). The red line in
panel (a) shows the observed timeseries of September ice area
(Fetterer et al. 2002, updated)
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during the first few months (JFM) of integration when they
are highly constrained by their respective initial conditions.

During the spring transition season (AMJ), the prognostic

potential predictability generally drops in all cases,
although it remains significant for some months and some

ensemble sets. It then rises again during all or part of the

summer (JAS), depending on the ensemble set. Addition-
ally, all ensemble sets exhibit significant PPP values during

all or part of winter in the second year with following

decreases during the second spring of integration.

While the ensemble sets have these general character-
istics in common, there are some considerable differences

as well. Ensemble Set 1, with relatively thick sea ice

conditions, retains significant potential predictability
throughout most of the first year of integration and has

particularly high values over the summer. It also retains

significant potential predictability during all or most of the
second summer (depending on the characterization of

natural variability used for comparison). Ensemble Set 2

also exhibits significant potential predictability over the
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Fig. 9 The prognostic potential
predictability of northern
hemisphere ice area for the three
Ensemble Sets. In panel a,
the prognostic potential
predictability is assessed
relative to both the present day
(solid) and pre-industrial (dash)
control integrations. The dotted
line indicates the 95% statistical
significance threshold
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the prognostic potential
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during the first few months (JFM) of integration when they
are highly constrained by their respective initial conditions.

During the spring transition season (AMJ), the prognostic

potential predictability generally drops in all cases,
although it remains significant for some months and some

ensemble sets. It then rises again during all or part of the

summer (JAS), depending on the ensemble set. Addition-
ally, all ensemble sets exhibit significant PPP values during

all or part of winter in the second year with following

decreases during the second spring of integration.

While the ensemble sets have these general character-
istics in common, there are some considerable differences

as well. Ensemble Set 1, with relatively thick sea ice

conditions, retains significant potential predictability
throughout most of the first year of integration and has

particularly high values over the summer. It also retains
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Fig. 9 The prognostic potential
predictability of northern
hemisphere ice area for the three
Ensemble Sets. In panel a,
the prognostic potential
predictability is assessed
relative to both the present day
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control integrations. The dotted
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significance threshold
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during the first few months (JFM) of integration when they
are highly constrained by their respective initial conditions.

During the spring transition season (AMJ), the prognostic

potential predictability generally drops in all cases,
although it remains significant for some months and some

ensemble sets. It then rises again during all or part of the

summer (JAS), depending on the ensemble set. Addition-
ally, all ensemble sets exhibit significant PPP values during

all or part of winter in the second year with following

decreases during the second spring of integration.

While the ensemble sets have these general character-
istics in common, there are some considerable differences

as well. Ensemble Set 1, with relatively thick sea ice

conditions, retains significant potential predictability
throughout most of the first year of integration and has

particularly high values over the summer. It also retains

significant potential predictability during all or most of the
second summer (depending on the characterization of

natural variability used for comparison). Ensemble Set 2

also exhibits significant potential predictability over the
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Fig. 9 The prognostic potential
predictability of northern
hemisphere ice area for the three
Ensemble Sets. In panel a,
the prognostic potential
predictability is assessed
relative to both the present day
(solid) and pre-industrial (dash)
control integrations. The dotted
line indicates the 95% statistical
significance threshold
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during the first few months (JFM) of integration when they
are highly constrained by their respective initial conditions.

During the spring transition season (AMJ), the prognostic

potential predictability generally drops in all cases,
although it remains significant for some months and some

ensemble sets. It then rises again during all or part of the

summer (JAS), depending on the ensemble set. Addition-
ally, all ensemble sets exhibit significant PPP values during

all or part of winter in the second year with following

decreases during the second spring of integration.

While the ensemble sets have these general character-
istics in common, there are some considerable differences

as well. Ensemble Set 1, with relatively thick sea ice

conditions, retains significant potential predictability
throughout most of the first year of integration and has

particularly high values over the summer. It also retains

significant potential predictability during all or most of the
second summer (depending on the characterization of

natural variability used for comparison). Ensemble Set 2

also exhibits significant potential predictability over the
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Initialized forecast studies 

Holland et al. (2011) can also be seen in Fig. 7. For ex-
ample, the PPP of Y2Y change (detrended anomalies)
from January is about 0.4 (0.45) for May and 0.55 (0.7)
for September (Figs. 7e,f). The high perfect-model pre-
dictability estimate from CFSv2 is also in accordance
with the analysis of Blanchard-Wrigglesworth et al.
(2011b)who showed that the initial value predictability of

pan-Arctic sea ice area is as high as 1–2 yr. While this
might indicate a large room for further improvement of
seasonal sea ice prediction, it should be emphasized that
the actual prediction skill strongly depends on the ac-
curacy of initial conditions and the perturbation among
ensemblemembers in the perfect-model experimentsmay
not represent observed errors. Further, the predictability

FIG. 7. SIE ACC and PPP based on perfect-model assumption. (a) ACC for total anomalies, (b) ACC for de-
trended anomalies, (c) ACC for Y2Y changes, (d) PPP forecasts for total anomalies, (e) PPP for detrended
anomalies, and (f) PPP for Y2Y changes. The ACC and PPP are plotted as a function of target time (x axis) and lead
time (y axis).

1384 MONTHLY WEATHER REV IEW VOLUME 141

Wang et al., 2013 
From NCEP Climate Forecast System, v2 

Other examples:  
Chevallier et al., 2013 
Sigmond et al., 2013 
Merryfield et al., 2013 

Much of  forecast skill a result of 
the trend 

For interannual variations, these 
studies generally obtain 
predictive skill for only a few 
month lead time 

s2
s 5s2 2s2

n, is the variance of ensemble mean across
the hindcast period with respect to monthly climatology,
representing a signal that is assumed to be predictable.
Accordingly, PPP is the ratio of variance of the signal to
the total variance.

Similar variations with season and lead time are seen
between ACC and PPP, with relatively higher skill for
August–October and lower skill for March–May. The
similar seasonality between ACC and PPP is because
bothACC and PPP are determined by the signal-to-noise

FIG. 5. (a) SIE ACC between observations and CFSv2 forecasts for total anomalies, (b) ACC for detrended
anomalies, (c) ACC for Y2Y changes, (d) SIE RMSE of CFSv2 forecasts for total anomalies, (e) RMSE for de-
trended anomalies, and (f) RMSE for Y2Y changes. The ACC and RMSE are plotted as a function of target time
(x axis) and lead time (y axis). The same color scales are used for both ACC and RMSE. Values in (a)–(c) are
dimensionless, and values in (d)–(f) are 106 km2. Significance level of 95% based onMonte Carlo test is indicated by
hatching.

1382 MONTHLY WEATHER REV IEW VOLUME 141



Conclusions and Thoughts on Paths Forward 
•  Idealized studies suggest predictive capability for 1-2 yrs  

– seasonally dependent mechanisms 

– predictability characteristics may change with large-scale 
ice loss 

•  Forecasting systems obtain skill for only ~months 

•  Need better understanding of  

– What predictability we can expect to realize given initial 
state information, model uncertainties 

– Where improvements are most beneficial (how this 
informs observing networks, model developments) 

– Predictability characteristics of regional information, 
different aspects of the ice cover  



Questions? 
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